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A note on long waves induced by short-wave 
groups over a shelf 
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The generation of long waves due to the refraction of wave groups over a shelf is re- 
examined. The appropriate boundary conditions for calculating the second-order 
mean free-surface displacement are discussed. Numerical results for a plane shelf are 
presented, which are different from those given by Mei & Benmoussa (1984). 

1. Introduction 
Mei & Benmoussa (1984, hereafter referred to as M& B) studied the long waves 

induced by short-wave groups over an uneven bottom. They showed that as the wave 
groups are refracted over a slowly varying depth region, two types of long waves, 
locked long waves and free long waves, are generated. While the locked long waves 
propagate together with the envelope of the short waves at  their group velocity, the 
free long waves are radiated away from the varying-depth region a t  the shallow 
water speed, (gh);. M & B gave numerical results for several different one-dimensional 
topographies, including a linear shelf connecting two water depths. The depth slope 
is discontinuous a t  the edges of the shelf. 

In M & B’s analysis only part of the second-order mean free-surface displacements 
and the normal flux are required to be continuous a t  the edges of the shelf. Because 
of the discontinuities in depth slope, the forcing terms (momentum fluxes) for the 
second-order free-surface displacements are also discontinuous along the edges of the 
linear shelf. In  this note, we re-examine the problem and derive proper matching 
conditions along the edges of the shelf. It is shown numerically that the depth 
discontinuity is also a source of generating long waves. 

In  the following section we first summarize M & B’s theory and give the corrections 
to some of the typographical errors which appeared in M & B. An alternative solution 
method for the long waves is given in $3. Numerical results are shown in $4. 

2. Summary of M & B’s theory 
In  this section we summarize the theory and key equations presented in M & B. In 

the original paper, some of these equations contain typographical errors, which are 
corrected here. M & B’s original equation number is co-listed, when corrections have 
been made. 

Denoting 5 as the first-order free-surface displacement, 
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in which * denotes the complex conjugate of the preceding term, A ( X , T )  is the 
amplitude, o is the wave frequency, k is the wavenumber vector, and fl  is the second- 
order mean free-surface displacement, the governing equations for A and fl  are given 
as 

(2 .2 )  

(M & B 2.6)  

Note that ( X ,  Y ,  T )  = e(x, y, t ) ,  where e + 1, are the slow variables and equations 
(2.1)-(2.3) are dimensionless. The non-dimensional variables are defined in (2.12) of 
M & B. To be consistent with the equations used in M & B and this note, the second- 
order mean free-surface displacement should be, however, normalized by the 
characteristic wave height (twice the wave amplitude uo), 2u0, i.e. 

(2 .4 )  
(M & B 2.12) 

M & B assumed that the incident wave groups are the superposition of two colinear 
sinusoidal wave trains of slightly different wavenumbers, k & eko, with normalized 
amplitudes 1 and b, respectively. The wave amplitude over the region of variable 
depth, h ( X ) ,  can be written as 

A ( X ,  Y ,  T )  = d(X) K,dX+ k, Y -QT 

+bexp[ -i(  [ o K x d X + k , Y - Q T  , (2 .5 )  111 (M&B 3.5)  

where the amplitude A"(X) and the x-component of the wavenumber for the wave 
envelope, K,, can be expressed as 

(2 .7)  

(M & B 3.9)  

We remark here that a factor of i$ was included in M & B's (3 .5 )  for the expression of 
the wave amplitude, A .  As a result their equation represented the superposition of 
two sinusoidal wave trains with normalized amplitude and Sb, respectively. The 
second-order free-surface displacement, corresponding to  (2.5)-(2.7),  can be written 
as : 

f l =  f l o ( X ) + # ~ ( X ) e x p [ 2 i ( k , Y - Q T ) ] + * } .  (2 .8 )  

In (2 .8)  LJX) represents the steady-state component of the second-order free-surface 
displacement, i.e. 
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The dynamic component is governed by 

+ 4 ( Q 2 - k 2 , h ) [ =  { ["(K: + k i )  +- O'k] bC,zo 
2sh2kh C, C,, 

dx 
(2.10) 

(M & B 3.15) 
- i i b  OC,,, & (t)} exp (2i K ,  U). 

For constant depth the above equation can be integrated to  give the locked long 
waves 

c = tL exp (2i a), (2.11) 

with 

For b = 1 and normal incidence, EL reduces to 

4k0 C,, - 1 
" =-8(h,-C:,)' 

(2.13) 

(M & B 4.3) 

I n  the constant-depth regions, XI < X or X < X,, the complete solutions for [are of 
the form 

c= (cL)jexP(.zi (gF)j? (2.14) 

where j = 0 corresponds to X < X ,  and j = 1 to X > X , .  In  (2.14) ((Jj (j = 0 and 1) 
are given in (2.12), while (tF)j are the free long waves which are the homogeneous 
solutions of (2.10) over the constant depth h, and h,. Because the free long waves 
must be either outgoing waves propagating away or decaying exponentially from the 
region of variable depth, the general expression for tF may be written as 

(eF), = B,exp [2i( - I ) j + l  A,(X-X,)] .  (2.15) 

where 
(2.16) 

(M & B 4 .5 )  

Note that hi could be real or imaginary. 

mean free-surface displacement could be expressed as 
Over the region of variable depth, X, < X < X , ,  M & B suggested that the dynamic 

The governing equation for tF is 

+ 4 ( O 2 - k i h ) E F  = G ( X ) ,  

(2.17) 

(2.18) 
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(2.19) 

dx (k)} Cl3 ( laKxu)’ ( M & B 5 . 2 )  

{12bb2[ d2Z dh dZ ( where 
G ( X )  = - h-+--+i 

d x 2  dxdx 

-~ibC~,k,cosa,- - exp 2i 

and 2 = (o-(L. M & B  solved (2.18) numerically with the following boundary 

(2.20) 

where (gF)j is given in (2.15). The first boundary condition ensures the continuity of 
the total second-order free-surface displacement. The second matching condition in 
(2.20) is, however, somewhat arbitrary for the cases with discontinuities in depth 
slopes. 

For cases where the bottom slope is discontinuous a t  X, and/or X,, the first 
derivative of &,,EL as well as the forcing terms of the second-order free-surface 
displacement (the right-hand side of (2.10)) are also discontinuous. The matching 
conditions given in (2.20) are inconsistent with the governing equation for [, (2.10), 
along the edges of the shelf. The appropriate matching (jump) condition for dc/dz a t  
X = X, can be obtained by integrating (2.10) from X = X, - S to X, + 6 and taking the 
limit as 6 --f 0. Hence, 

(2.21) 

in which X,f = lim (X,+S), as S-t  0. Similarly, the jump condition for dQdz a t  
X = X, can be found as 

(2.22) 

in which X, & = lim (XI S), as 6-t 0. 

3. An alternative solution method 
As pointed out by M&B, because of the appearance of the first- and second- 

derivatives of to and EL on the right-hand side of (2.18), double precision is necessary 
in their numerical scheme. We remark that the slope of tL a t  h = 0.5 is very steep, 
nearly vertical. To avoid this numerical accuracy problem, we solve (2.18) after a 
simple transformation. Introducing the transformation 

- 2b 
F ( X )  = g--g exp l + b 2  
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into (2.10), we obtain 

+4(Q2-k;h)F = D(X), 

in which 

(3.3b) 

Therefore, the right-hand side of (3.2) does not involve the derivatives of 6, and 
tL. The boundary conditions used to solve (3.2) are the continuity of the total [ 
defined in (2.17) and the jump conditions for d[/dx a t  X = X ,  and X ,  as given in 
(2.21) and (2.22). Thus 

2b 
l + b 2  &KJ +-5 = 5,+B,, (3.4) 

2+(*)2iK25, dX l + b 2  = 2iK25,-2ih,B,- (1 - ?b2)%lxo2 - (3.5) 

a t  X = X,, and 

F(X,)  +&l,exp (2i l : K ,  a) = tL exp (e i  11; K, a) + B,, (3.6) 

dF+ dX (*) l + b 2  2iK, 6, exp (ei l: K, dX) 

= [2Xx &,- (L)Gi l + b 2  ax,+ ] exp (2i [: K, dX) + %h,B,, (3.7) 

a t  X = X,. Eliminating B, from (3.4) and (3.5), we obtain 

dF 
-+22ih,F dx = 2i(K,+h,) [ tL- (1 - ? b 2 ) t a ] - ( ~ ) % ~ x a ~  (3.8) 

a t  X = X,. From (3.6) and (3.7), we can eliminate B, to  get 

2b d60 2ih,F = 2i(K,-h,) EL- - dF 
-- dx { [ (1 ? b 2 ) 6 a ] ~ ( ~ ) ~ ~ x , ~ e x p ( 2 i ~ ~ K z ~ ) 7  

(3.9) 

at X = X,. Equation (3.2) with the boundary conditions (3.8) and (3.9) can be readily 
solved by a finite-difference method. Once F is found, B, and B, can be calculated 
from (3.4) and (3.6). 

4. Numerical examples 
In  this section numerical results are presented for the case of a linear shelf in which 

a plane slope connects two constant depths. Mathematically, these shelves can be 
expressed as 

h ( X )  = ha+ (X-X, )  ~ ~ 1 - - ~ , ~ / ~ ~ , - ~ 0 ~ ,  (4.1) 
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FIGURE 1.  Amplitudes of 6 ,  over the linear shelf for different incident angles with (h, - h,( = 
0.5:  ( a )  h, = 0.5 and h, = 1.0; ( b )  h, = 1.0 and h, = 0.5. 
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FIQURE 2. Amplitudes of the total second-order mean free-surface displacements, [, over the linear 
shelf for different incident angles with (h,-h,l = 0.5 : (a) h, = 0.5 and h, = 1.0; ( b )  h, = 1.0 and 
h, = 0.5. 

for X ,  < X < X,. The steady-state mean free-surface set-down in the constant-depth 
region remains a constant. Therefore, 

in the matching conditions (3.8) and (3.9). 



170 P .  L.-F. Liu 

2.0 I 

0.5 1.5 2.5 3.5 
L 

FIGURE 3. Amplitudes of free long waves a t  the edges of a linear shelf for normal incidence 
with Jhl-hgJ = 0.5. 

Numerical results are obtained by using the present solution method for Ih, - h,l 
= 0.5 and L = (X,-X,) = 1.0 with h, = 0.5 and 1.0. The present numerical solutions 
were verified by the analytical solutions for the cases of normal incidence and 
increasing depth. With the finite-difference grid size AX = 0.02, i t  is found that the 
present numerical results are the same as those calculated from the analytical 
solutions to within 0.1 %. The amplitudes of E, as defined by M & B are plotted in 
figure 1.  Because different boundary conditions are used, the present results are quite 
different from those reported by M & B ; particularly, slopes of ItF[ are not zero a t  
X = X ,  and XI. The amplitudes of the total second-order mean free-surface 
displacements over the linear shelf are shown in figure 2. In  figure 3, the free long- 
wave amplitudes a t  the edges of the shelf are plotted for normal incidence and 
different shelf width. The amplitudes of free long waves a t  the right edge, X = X,,  
predicted by the present solution method are greater than those reported by M & B 
for the case of a negative shelf slope. If the shelf slope is positive, the reverse is true. 
Along the left edge of the shelf, X = X,, the present solutions give smaller amplitudes 
of free long waves in both constant-depth regions than those given by M & B. 
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